

How to save diminishing carbon sinks of the EU?

Case Finland: State of carbon sinks and ways to enhance them in forests

Aleksi Lehtonen

State of play

- Forest reference level for 2021-25: without wood products -23.5 Mt CO₂ (will change due to technical corrections)
- Climate neutral Finland VNS 6/2022 based on the assumption that roundwood and woodchip imports from Russia will continue and forests grow as earlier
- Year 2021: growth estimate of Finnish forests reduced by 4,3 mill m³ per year (note: 8.6.2023 Luke reported increase in growth by 0.5 mill m³)
- According to GHG-inventory forest sink is -10.1 Mt CO_2 for 2022 (preliminary estimate 31.5.2023)
- Emissions from agricultural soils have remained, latest estimate for LULUCF for 2022 was 9.6 Mt CO₂
- Finland is C neutral by 2035 (climate law additional measured needed if not in compliance)

Latest official NIR (15.4.2023), LULUCF sector is a source of emissions in Finland

Figure 6.1-1 Net emissions and removals in the LULUCF sector by land-use category and harvested wood products, Mt CO₂ eq.

EU targets for 2021-25 are challenging for Finland

Based on data 12/2022. Negative values are carbon sinks and positive values show emission sources.

Emissions from cropland have been increasing (mainly from organic soils) and forest sink has reduced

NOTE: y-axis scales vary

Point of view: forest and climate neutral Finland by 2035

Finland can be C neutral if there is a sink -20,7 Mt CO₂ ekv. by 2035

- If we assume that growth remains that current level (1) 103 mill. m³ OR increases to (2) 110 mil.. m³ by 2035
- Results: amount of annual harvesting can be between 62-70 mill m³ per year

Assumptions:

- Level of growth holds (no massive disturbances)
- Distribution of harvests as earlier
- Emissions of organic croplands will be 50% from current by 2035 (8,5 \rightarrow 4,25 Mt CO₂)
- Reduction of wetland emissions by 2035 (2,2 \rightarrow 1,1 Mt CO₂)
- HWP sink as in 2021 (-3,1 Mt CO₂)
- Emissions from drained peatlands do not increase substantially
- NOTE: soil emissions after clear-cut have not been taken into account (Korkiakoski et al. 2023)
- NOTE: increase in the firewood consumption has not been taken into account

Korkiakoski, M., Ojanen, P., Tuovinen, J.P., Minkkinen, K., Nevalainen, O., Penttilä, T., Aurela, M., Laurila, T. and Lohila, A., 2023. Partial cutting of a boreal nutrient-rich peatland forest causes radically less short-term on-site CO2 emissions than clear-cutting. *Agricultural and Forest Meteorology*, 332, p.109361.

What we can do?

ILMAVA-project

Mapping measures to mitigate climate change with land-use sector

Opportunities:

- Climate smart forest management of fertile drained peatlands (no clear-cuts)*
- Paludiculture (higher water table)
- Avoiding deforestation
- Forest fertilisation (ash & N)

https://jukuri.luke.fi/handle/10024/547830

NVARAKESKUS

Measure	Land area by measure (kha/v)	Time period needed for effects	Emission reductions 2035 (Mt CO eq./v)
Agriculture on peatland	4 ■	•	0,91
Rewetting	5,8 •	٠	0,24
Afforestation	6 -	•	0,19
Conservation areas	6 -	•	0,17
Deforestation	6,5 🔹	•	0,68
Upland soils	15 🔳	•	0,22
Seedling stands	30 🗖	•	0,31
Nitrogen fertilization	50 🗖	•	0,62
Drained peatland soils	75 🔳	•	1,20
Ash fertilization	76,7 🔳	٠	0,28
Agricultrural upland soils	1000	•	0,69
Wood products	22 000	*	1,50
Decaying wood	22 000	•	1,26
* emissions reduction from wood products are driven by global demand.			

Fast effect

Slow effect

*Lehtonen et al. 2023. Preprint: https://www.researchsquare.com/article/rs-2943040/v1

Climate smart practises in land-use sector

What can be done in Europe?

Greatest potentials

Sweden, Finland, Spain, France, Poland and Germany

Mitigation potential (Mt CO, eq yr-1)

Figure 1. Forest-based mitigation potential by 2050 in the EU-27, Norway, Switzerland and the UK by mitigation activity type.

Source: https://efi.int/sites/default/files/files/publication-bank/2022/efi fstp 14 2022.pdf

Figure 2. Forest-based mitigation potential by 2050 at the country level.

Changes in the harvesting levels

Smaller climate benefits

- Avoiding deforestation
- Changes in the use of wood

IONNONVARAKESKUS

Conclusions:

Carbon neutrality can be achieved only with new additional measures also in the LULUCF sector

There are measures in the Finnish land-use sector:

- Agriculture on organic soils (paludiculture)
- Avoiding deforestation
- Ash fertilisation on peat soils
- Longer rotation periods (sites with low risks)
- Continuous cover forestry on drained peatlands
- Management of state forests

Conclusions II

Permanence of the land-based climate mitigation solutions are often challenged

- If post 2015 droughts are the new normal for Finland
 - Need to think more about adaptation instead of mitigation
 - Tree growth may reduce even more, even more challenges to achieve 2030 EU targets + 2035 climate neutrality

Shopping list

- Information on climate change mitigation measures and their contribution in land-use sector is know → political will is needed
- EU CAP and national subsidies should not prevent climate change mitigation measures (e.g. transfer to paludiculture)
- Subsidies on nutrient-rich drained forests lands should be supporting continuous cover forestry, not preventing it
- EU wide LUCAS soil inventory data is very important (and only soil C inventory) for many MS
 - Data quality for forests have improved starting 2022, please pay attention to that (increases data usability)

Kiitos! Thanks!

